Derivatives
The **derivative** of a function measures the **instantaneous rate of change** of the function with respect to its variable. It represents the **slope of the tangent line** at any given point.
1. Definition of a Derivative
The derivative of \( f(x) \), denoted as \( f'(x) \) or \( \frac{d}{dx} f(x) \), is defined as:
\[ f'(x) = \lim\limits_{h \to 0} \frac{f(x + h) - f(x)}{h} \]This limit must exist for \( f(x) \) to be **differentiable** at \( x \).
2. Basic Differentiation Rules
The following rules simplify differentiation:
- Power Rule: \( \frac{d}{dx} x^n = n x^{n-1} \)
- Constant Rule: \( \frac{d}{dx} c = 0 \) for any constant \( c \)
- Constant Multiple Rule: \( \frac{d}{dx} [c f(x)] = c f'(x) \)
- Sum Rule: \( \frac{d}{dx} [f(x) + g(x)] = f'(x) + g'(x) \)
- Product Rule: \( \frac{d}{dx} [f(x) g(x)] = f(x) g'(x) + f'(x) g(x) \)
- Quotient Rule: \( \frac{d}{dx} \left[ \frac{f(x)}{g(x)} \right] = \frac{f'(x) g(x) - f(x) g'(x)}{g(x)^2} \)
- Chain Rule: \( \frac{d}{dx} f(g(x)) = f'(g(x)) g'(x) \)
3. Example Applications
Example 1: Using the Power Rule
Differentiate:
\[ f(x) = 5x^4 - 3x^2 + 7 \]Applying the power rule:
\[ f'(x) = (5 \times 4)x^{3} - (3 \times 2)x^{1} + 0 \] \[ f'(x) = 20x^3 - 6x \]Example 2: Product Rule
Find \( \frac{d}{dx} [(x^2 + 1)(x - 3)] \).
Using the product rule:
\[ \frac{d}{dx} [(x^2 + 1)(x - 3)] = (x^2 + 1)'(x - 3) + (x^2 + 1)(x - 3)' \] \[ = (2x)(x - 3) + (x^2 + 1)(1) \] \[ = 2x(x - 3) + x^2 + 1 \] \[ = 2x^2 - 6x + x^2 + 1 \] \[ = 3x^2 - 6x + 1 \]Example 3: Chain Rule
Find \( \frac{d}{dx} \) of \( f(x) = (3x^2 + 5x)^4 \).
Using the chain rule:
\[ f'(x) = 4(3x^2 + 5x)^3 \times (6x + 5) \] \[ = 4(6x + 5)(3x^2 + 5x)^3 \]Practice Problems
Problem 1: Compute:
\[ \frac{d}{dx} \left( x^5 - 7x^3 + 2x \right) \]Solution:
\[ f'(x) = 5x^4 - 21x^2 + 2 \]Problem 2: Compute:
\[ \frac{d}{dx} \left( (2x^2 - 1)(x^3 + 4) \right) \]Solution (Product Rule):
\[ \frac{d}{dx} = (4x)(x^3 + 4) + (2x^2 - 1)(3x^2) \] \[ = 4x(x^3 + 4) + 3x^2(2x^2 - 1) \] \[ = 4x^4 + 16x + 6x^4 - 3x^2 \] \[ = 10x^4 - 3x^2 + 16x \]